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Abstract. A direct numerical simulation approach for the study of gravity currents in a plane channel is described.
The numerical method employed is based on a mixed spectral/spectral-element discretization in space together
with finite differences in time. For the validation of the code, simulations of Rayleigh–Bénard convection are
performed and the results are compared with theoretical predictions and reference data from the literature. The
dynamics of gravity currents is then studied by simulations of two-dimensional lock-exchange flow. The results
obtained in these simulations are in good agreement with recent experimental data. By a systematic variation of
the Grashof number the influence of viscous diffusion on the characteristics of the propagating fronts is assessed.
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1. Introduction

Gravity currents driven by density differences in a fluid are of considerable interest in natural
science and engineering (see [1]). Cold-air fronts in the atmosphere, turbidity currents on the
ocean floor or powder-snow avalanches are typical examples of gravity currents that can be
observed in nature. The study of gravity currents is an important issue in safety engineering
and environmental protection, since such currents may form, for example, after an accidental
release of dense gases from an industrial plant or the spillage of hydrocarbons on the sea
surface. In such situations detailed knowledge about how and where the hazardous substances
spread in their environs is needed for both risk assessment and the design of protective
measures. In the past numerous theoretical and experimental studies of gravity currents were
conducted which aimed at clarifying issues like the inner structure of the currents, their
propagation speed or the mixing with ambient fluid [2, 3, 4, 5, 6]. On the other hand, few
numerical simulation studies were performed in this field so far, and those which were made
employed computational grids which did not allow to capture all small-scale structures of the
flow [7, 8]. Direct numerical simulations (DNS) of this problem, where all relevant physical
phenomena are thoroughly resolved in space and time, have not been attempted yet.

The present paper reports about the first stage of an ongoing research project in which the
DNS approach is applied to study fundamental physical properties of gravity currents. The
flow which we consider is the mutual intrusion of two gases of different density in a plane
channel. Initially, the two gases are separated by a vertical membrane. After the removal of
the membrane, a heavy-gas front and a light-gas front develop and propagate along the lower
and the upper channel wall, respectively. A principle sketch of the setup and the resulting flow
is provided in Figure 1. This type of flow has been extensively studied in experiments and
is often called the lock-exchange problem [1, 9]. In the present stage of our project we focus
on the simulation of strictly two-dimensional flows. Simulations of the full three-dimensional
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104 C. Härtel et al.

Figure 1. Principle sketch of lock-exchange flow in a channel of length L1 and height 2h. The dotted line gives
the interface between the two gases some time after the release.

problem are currently being prepared. All simulations are based on the Boussinesq Equations
in which density differences are assumed to be small. To solve these equations numerically,
we employ a high-order method which will be described in detail.

In the following section we will lay out the governing equations and discuss the dimension-
less parameters that enter the problem. The description of the numerical method employed is
then given in Section 3. To validate our code, we have conducted simulations of Rayleigh–
Bénard convection, and the respective results are given in Section 4. In Section 5 we present
the simulations of two-dimensional lock-exchange flow. Finally, in Section 6, a summary of
our results, together with some concluding remarks, will be given.

2. Governing equations

Since we are primarily interested in flows with small density differences, we employ the
Boussinesq approximations in the budget equations for mass, momentum and energy for the
mathematical description of the flow [10]. The variations in density ~� are assumed to be caused
by variations in temperature ~T only (a tilde denotes dimensional flow variables), i.e.

~�� ~�0

~�0
= �( ~T � ~T0): (1)

In the above equation ~�0 and ~T0 denote the reference values of density and temperature,
respectively, while � is the heat-expansion coefficient of the fluid.

In the Boussinesq Equations density variations are accounted for only in the buoyancy
term in the momentum equation. If the buoyancy force acts in the normal direction x3 (see
Figure 1), these equations take the following dimensionless form

@uk

@xk
= 0; (2)

@ui

@t
+
@(uiuk)

@xk
= � @p

@xi
+

1p
Gr

@2ui

@xk @xk
+ T�i3; (3)

@T

@t
+
@(Tuk)

@xk
=

1p
GrPr2

@2T

@xk @xk
; (4)

where ui denotes the velocity components, p the pressure and T the temperature.
In (2)–(4) all terms have been made dimensionless by the channel half-width h, the

temperature difference �~T = ~Tmax � ~Tmin and the buoyancy velocity ~ub

~ub =
p
g0h: (5)
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In (5) g0 denotes the reduced gravity (see [1]) which is computed from the gravitational
acceleration g by

g0 = g��~T : (6)

The pressure p in (3) has been normalized by ~�~u2
b and the non-dimensional temperature is

defined as

T =
~T � ~Tmin

�T
: (7)

From the normalization two dimensionless parameters arise. The first of these is the Prandtl
number Pr

Pr =
�

�
; (8)

which is the ratio of kinematic viscosity � and molecular diffusivity of temperature �. The
second parameter is the ratio of buoyancy forces and viscous forces and is usually referred to
as the Grashof number Gr [10]

Gr =
�
~ubh

�

�2

: (9)

From the momentum budget (3) one finds that, in the present case of natural convection,
the square root of the Grashof number plays the same role as the Reynolds number in
forced convection flows. Similarly,

p
GrPr2 corresponds to a Péclet number as is seen from

Equation (4).

3. Numerical method

The numerical method employed for the integration of the basic equations is an extension of
the scheme used in [11] which was developed for the simulation of transition and turbulence
in plane channel flow. The computational box is the domain sketched in Figure 1, where the
longitudinal and wall-normal direction of the Cartesian coordinate system are denoted by
x1 and x3, respectively. The third, lateral, direction x2 has been omitted in the Figure for
simplicity.

In the longitudinal direction two diffent types of boundary conditions may be applied: In
the lock-exchange simulations the flow is assumed to possess a mirror symmetry with respect
to x1 = �L1=2, corresponding to frictionless end walls at these locations. Alternatively,
periodic boundary conditions may be applied at x1 = �L1=2. The latter boundary condition
is utilized in our computations of Rayleigh–Bénard convection which we chose as the test case
for the validation of the code. In the lateral direction x2 the same types of boundary conditions
can be imposed as in x1, i.e. either symmetry or periodicity conditions at x2 = �L2=2. The
top and bottom boundaries at x3 = �1 are either rigid no-slip walls or no-stress (i.e. free-slip)
boundaries, and they may be either isothermal or adiabatic.

3.1. TEMPORAL DISCRETIZATON

The temporal discretization of Equations (3)–(4) is accomplished by a semi-implicit finite-
difference method. The diffusive terms and the buoyancy term are discretized by means of a
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second-order accurate Crank–Nicolson scheme, while a third-order low-storage Runge–Kutta
method is utilized for the nonlinear terms. If we introduce the superscript m to denote the
mth Runge–Kutta substep (m = 0; 1; 2; 3) within an individual time step �t = tn+1 � tn,
the time-discretized governing equations read

@um+1
k

@xk
= 0; (10)

@2um+1
i

@xk @xk
� �um+1

i � @qm+1

@xi
+
p

GrTm+1�i3 = �rmi ; (11)

@2Tm+1

@xk @xk
� �Tm+1 = �rmT ; (12)

where

� =
2
p

GrPr2

�mt
; � =

2
p

Gr
�mt

(13)

and q is the modified pressure which is defined as

q = 2
p

Gr ( 1
2uiui + p): (14)

The respective right-hand sides of Equations (11, 12) are

rmi = 2
p

Gr
�
umi
�mt

+ 1M
m
i + 2M

m�1
i

�
+

@2umi
@xk @xk

+
p

GrTm�i3; (15)

rmT = 2
p

GrPr2
�
Tm

�mt
+ 1N

m + 2N
m�1

�
+

@2Tm

@xk @xk
; (16)

where 1 and 2 denote the Runge–Kutta coefficients of each substep m [12]. In (15, 16) Mi

and N designate the nonlinearities which are treated explicitly

Mi = �uk
�
@ui

@xk
� @uk

@xi

�
; (17)

N = �uk
@T

@xk
: (18)

To enforce the continuity constraint (10) at each intermediate time level, a solution of a
Poisson Equation for the modified pressure qm+1 is required. We obtain this Poisson equation
by taking the divergence of the time-discretized momentum budget (11) which yields

@2qm+1

@xk @xk
=

@rmk
@xk

+
p

Gr
@Tm+1

@x3
: (19)
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DNS of intrusion fronts 107

3.2. SPATIAL DISCRETIZATION IN HOMOGENEOUS DIRECTIONS

The assumption of symmetry or periodicity in the longitudinal and lateral directions allows
for the application of a Fourier spectral method in x1 and x2. In this approach any dependent
variable f , say, is expanded in a complex Fourier series

f(x1; x2; x3; t) =
X
k1

X
k2

f̂(k1; k2; x3; t) eI(k1�1x1+k2�2x2); (20)

where

jkij <
Ni

2
; �i =

2�
Li

; (i = 1; 2) (21)

and

I =
p
�1: (22)

In Equation (21) Ni is the number of grid points used in the direction xi. In the expansion
(20) a hat has been used to denote the Fourier coefficients (or Fourier modes) as will generally
be done in this paper. We remark that the Fourier expansion simplifies to an expansion of the
flow variables in real sine and cosine series, if symmetry conditions are applied at �Li=2,
which reduces the computational costs significantly.

Introducing the expansion (20) into (10)–(12) and applying the standard Galerkin procedure
[13] we are led to a system of five one-dimensional Helmholtz-type equations for the time
advancement of each mode (k1; k2)

(ûm+1
1 )00 � (B + �)ûm+1

1 � Ik1�1q̂
m+1 = �r̂m1 ; (23)

(ûm+1
2 )00 � (B + �)ûm+1

2 � Ik2�2q̂
m+1 = �r̂m2 ; (24)

(ûm+1
3 )00 � (B + �)ûm+1

3 � (q̂m+1)0 +
p

Gr T̂m+1 = �r̂m3 ; (25)

(q̂m+1)00 � B qm+1 = I(k1�1r̂
m
1 + k2�2r̂

m
2 ) + (r̂m3 )

0 +
p

Gr
@T̂m+1

@x3
; (26)

(T̂m+1)00 � (B + �)T̂m+1 = �r̂mT ; (27)

which have to be solved under the continuity constraint

I(k1�1û
m+1
1 + k2�2û

m+1
2 ) + (ûm+1

3 )0 = 0: (28)

In the above equations B = (k1�1)
2 + (k2�2)

2 and the prime denotes differentiation with
respect to x3. Further, r̂mi and r̂mT are the coefficients of the Fourier transforms of (15) and
(16), respectively. For the computation of r̂mi and r̂mT , the nonlinearities Mi and N need to be
evaluated at the time levels m and m � 1, which is done in a pseudo-spectral manner [13].
This involves a forward Fourier transform of the velocity components and the temperature,
the computation of the nonlinear products in real space and the backward transform of these
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108 C. Härtel et al.

products to wavenumber space. To make sure that the resulting Fourier coefficients M̂i and
N̂ are free of aliasing errors, the 3/2-rule is employed [13].

3.3. SPATIAL DISCRETIZATION IN WALL-NORMAL DIRECTION

The discretization of the system (23)–(28) in the wall-normal direction is accomplished by a
spectral-element method where the full domain �1 6 x3 6 1 is divided into ne subdomains.
The kth element of this decomposition covers the subdomain located between the boundaries
xk�1

3 and xk3 (k = 1; : : : ; ne). The boundaries of the individual elements can be chosen freely,
the only restrictions being that xk�1

3 > xk3 and that x0
3 and xne3 coincide with the global

boundaries of the flow domain at x3 = +1 and x3 = �1, respectively.
In each of the elements a spectral collocation technique [13] is employed which is based on

an expansion of the dependent variables in Chebyshev polynomials (Legendre polynomials
may be applied alternatively). The numbernpof discrete grid points within each element, being
the same for all elements, is a free parameter and determines the approximation order of the
spatial discretization in x3. In each element the discrete mesh points xk3;j (j = 1; : : : ; np) are
obtained from a linear mapping of the Gauss–Lobatto points [13] of the expansion functions
onto the physical domain covered by the kth element. For the Chebyshev polynomials this
results in a cosine distribution

xk3;j =
xk�1

3 + xk3
2

+ �k � cos

 
(j � 1)�
np � 1

!
; j = 1; : : : ; np: (29)

In (29) the metric coefficient �k accounts for the size of the subdomain k

�k =
xk�1

3 � xk3
2

: (30)

Note that the npth collocation point of element k coincides with the first collocation point
of the element k + 1. Consequently, the total number N3 of grid points in the wall-normal
direction is

N3 = ne(np � 1) + 1: (31)

In the present method all flow variables (i.e. the velocity components, the pressure and the
temperature) are located at the same grid points.

The application of the collocation method transforms the ordinary differential Equa-
tions (23)–(28) into a set of linear algebraic equations for the vectors of the unknowns
ûi;j; q̂j and T̂j at the nodal points x3;j (j = 1; : : : ; N3). If we drop the indices of the time
discretization for simplicity, these equations read

d̂iv ûi;j = 0; (32)

D(2)
3 û1;j � (B + �)û1;j � Ik1�1q̂j = �r̂1;j; (33)

D(2)
3 û2;j � (B + �)û2;j � Ik2�2q̂j = �r̂2;j; (34)

D(2)
3 û3;j � (B + �)û3;j �D3q̂j = �r̂3;j +

p
Gr T̂j; (35)
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DNS of intrusion fronts 109

Figure 2. Structure of the differentiation matrices. In the matrix D3 the blocks overlap by one element. The width
m of each block of the matrix D(2)

3 is given by m = 2np � 1.

D(2)
3 q̂j � B q̂j = I(k1�1r̂1;j + k2�2r̂2;j) +D3r̂3;j +

p
GrD3T̂j ; (36)

D(2)
3 T̂j � (B + �)T̂j = �r̂T;j; (37)

where the discrete divergence operator in wavenumber space d̂iv is given by

d̂iv ûi;j � I(k1�1û1;j + k2�2û2;j) +D3û3;j; (38)

and D3 and D(2)
3 denote the differentiation matrices of the first and second derivative in the

wall-normal direction, respectively. The structure of these differentiation matrices is sketched
in Figure 2. The matrix D3 is composed of ne individual np � np blocks, one block for each
of the subdomains. The elements of these blocks are given by the elements of the common
np � np Chebyshev (or Legendre) differentiation matrix (see [13]) multiplied by the metric
coefficient �k given by (30). As a patching condition the solution and its first derivative are
required to be continuous across the interface of each two neighboring elements which leads
to an overlapping of two adjacent blocks. The matrix element at the position of overlap is
then replaced by the arithmetic mean of the respective corner elements of the original np�np
blocks.

The algorithm employed for the solution of (32)–(37), which will be outlined in the
subsequent section, requires that the Poisson equation for the pressure (36) is precisely the
discrete divergence of the momentum Equations (33)–(35). This implies that the first and
second derivatives in the wall-normal direction have to be consistent in the sense that the
application of the operator D(2)

3 is, up to round-off errors, identical with the result of two

successive applications of D3. In other words, the matrix D(2)
3 must be computed from D3 by

D(2)
3 = D2

3 � D3 � D3: (39)

Consequently, the matrix D(2)
3 has a bandwidth which is almost double that of D3. Note

that this approach is different from what is usually done in spectral-element methods, since
in most approaches the matrix D(2)

3 is constructed analogously to D3, meaning that D(2)
3

is built up from np � np blocks of second-order differentiation matrices derived from the
respective expansion functions (see e.g. [14, 15]). In that case the matrices of the first and
second derivatives are of equal bandwidth.
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110 C. Härtel et al.

3.4. SOLUTION OF THE DISCRETIZED SYSTEM

In the discretized system (32)–(37) the solution of the energy equation is decoupled from the
solution of the other equations owing to the fact that the convective transport of thermal energy
has been discretized explicitly. Equation (37) is therefore solved first. The wall boundary
conditions for the temperature equation are either Dirichlet or Neumann conditions, depending
on the specific flow problem at hand. In the lock-exchange simulations we use adiabatic walls
which corresponds to homogeneous Neumann conditions

@T

@x3
= 0 at x3 = �1: (40)

On the other hand, isothermal walls are prescribed in the simulations of Rayleigh–Bénard
convection, i.e.

T (x3 = +1) = 0; T (x3 = �1) = 1: (41)

Once the temperature field at the new time level is known, it can be inserted into the
respective terms of the right-hand sides of Equations (35) and (36). The system (32)–(36) then
has to be solved in a coupled manner. For the velocities arbitrary boundary conditions can be
prescribed which may be either Dirichlet or Neumann conditions. The only restriction is that
the imposed conditions need to be compatible with the continuity equation at the boundaries

d̂iv ûi;j = 0 at j = 1; N3: (42)

The difficulty with the coupled solution of (32)–(36) is that the Poisson equation for the
pressure cannot readily be solved, since the correct boundary conditions for q̂j are not known
at the outset. Rather they are implicitly determined by (32), i.e. the requirement that the
discrete divergence of the velocity field ûi;j has to vanish in the whole domain. The method
we employ to solve this problem is an extension of the influence-matrix technique developed
by Kleiser and Schumann [16] (see also [13] for a detailed discussion of that scheme). The
original algorithm was specifically designed for no-slip walls, while the present version allows
for more general boundary conditions at x3 = �1.

In order to derive the desired divergence-free solution for ûi;j , let us consider the general
solution of the system (33)–(36) for arbitrary pressure boundary conditions. This general
solution can be written as a linear combination of a particular solution (û

p
i;j; q̂

p
j ) with, for

example, homogeneous Dirichlet conditions for q̂j , and two solutions (ûh1
i;j ; q̂

h1
j ) and (ûh2

i;j; q̂
h2
j )

of the associated homogeneous problem, i.e. (33)–(36) with zero on the right-hand sides. The
pressure boundary conditions of the latter two solutions must be linearly independent and
we employ q̂h1

1 = 0; q̂h1
N3

= 1 and q̂h2
1 = 1; q̂h2

N3
= 0, respectively. The velocity boundary

conditions for the particular solution are the same as those for the full problem; on the other
hand, homogeneous velocity boundary conditions have to be imposed for ûh1

i;j and ûh2
i;j . These

are either Dirichlet or Neumann conditions, depending on the type of boundary conditions
used for ûi;j . In terms of the three individual solutions, the general solution (ûi;j; q̂j) of the
system (33)–(36) can be written as

 
ûi;j

q̂j

!
�

0
@ û

p
i;j

q̂
p
j

1
A+ �1

0
@ ûh1

i;j

q̂h1
j

1
A+ �2

0
@ ûh2

i;j

q̂h2
j

1
A ; (43)
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where �1 and�2 are yet undetermined coefficients. Note that each pair of boundary conditions
for the pressure uniquely determines the pair of coefficients �1; �2 and vice versa.

The coefficients �1; �2 have to be determined such that the resulting velocity field satisfies
the continuity constraint. A necessary and sufficient condition for the divergence of the velocity
to vanish in the whole domain D is given by (42), i.e. by the requirement that it vanish on
the boundary @D [13, 16]. This condition yields the two linear equations from which the
coefficients �1 and �2 can be computed

d̂iv ûi;j = d̂iv ûpi;j + �1 d̂iv ûh1
i;j + �2 d̂iv ûh2

i;j = 0 at j = 1; N3: (44)

This is equivalent to0
@ d̂iv ûh1

i;j(j = 1) d̂iv ûh2
i;j(j = 1)

d̂iv ûh1
i;j(j = N3) d̂iv ûh2

i;j(j = N3)

1
A

| {z }
influence matrix

 
�1

�2

!
= �

0
@ d̂iv ûpi;j(j = 1)

d̂iv ûpi;j(j = N3)

1
A : (45)

Inserting the coefficients obtained from (45) into (43) yields the desired divergence-free
solution. Note that the homogeneous solutions are independent of the time-dependent right-
hand sides of (33)–(36) which allows us to compute and store them prior to the time integration.
The same holds for the influence matrix. A pair of homogeneous solutions along with the
influence matrix is required for each Fourier mode (k1; k2). The only solution that needs to
be computed at each time step is the particular solution (ûpi;j; q̂

p
j ).

If the above procedure is applied, the resulting flow field ûi;j will not yet be divergence free
to machine accuracy. The reason for this is that the discretized momentum budgets (33)–(35)
are not fulfilled at j = 1; N3 where the boundary conditions for the velocities are imposed.
This fact has to be taken into account in the solution of the discretized Poisson Equation (36),
since this equation is the discrete divergence of (33)–(35). An efficient algorithm to correct
these additional discretization errors is described in detail in [13].

4. Rayleigh–Bénard convection

For the validation of the code we have performed simulations of two-dimensional Rayleigh–
Bénard convection, since for this flow problem extensive reference data are available. From
the numerical point of view the only differences between the Rayleigh–Bénard flow and the
lock-exchange flow are in the boundary conditions for the temperature (see (40, 41)) and the
initial temperature distribution. In the Rayleigh–Bénard problem the walls are assumed to be
isothermal and the initial temperature profile is linear

T0 = T (x1; x3; t = 0) =
1� x3

2
: (46)

The parameter which determines whether or not a convective motion sets in, is the Rayleigh
number Ra defined as

Ra = 8 � GrPr: (47)

For higher values of the Rayleigh number the fluid layer becomes unstable and a flow pattern
will evolve which is characterized by the system of counter-rotating convection rolls sketched
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Figure 3. Principle sketch of convection rolls in Rayleigh–Bénard flow.

in Figure 3. In the definition (47) a factor of 8 has been included, since the Rayleigh number
is commonly based on the full channel height d = 2h as a characteristic length scale [10, 17].
If no-slip conditions are imposed at the lower and upper walls, linear stability theory shows
that Rac = 1707�76 is the minimum Rayleigh number for which a convective motion may set
in [17]. Rac is usually termed the critical Rayleigh number. The associated wavelength �c of
the most unstable eigenmode is �c = 2�=Lc � 1�5585; Lc being the horizontal width of a
pair of counter-rotating convection rolls normalized by the channel half-width h.

In all simulations we performed, the length L1 of the computational domain was set to
Lc and the Prandtl number was set to Pr = 0�71 which is the standard value for air. The
Rayleigh numbers of the simulations were all supercritical, but well below the value where a
transition to three-dimensional flow patterns can be observed (see [18]). The velocity fields
were initialized with fluid at rest. In order to trigger the onset of convection, we disturbed the
linear temperature profile (46) by noise of the order of 10�10 which was superimposed on the
k1 = 1 and k1 = 2 modes. The flow development was then followed in time until a state of
steady cellular convection was attained.

An overall impression of the various flow regimes encountered during the temporal evo-
lution of the flow can be gained from the time history of the Fourier modes. For one of the
simulations, which we will refer to as SI here, such a time history is given in Figure 4 where
the maximum of the Fourier modes of the temperature with respect to x3 has been plotted

T̂max(k1; t) = max
x3

jT̂ (k1; x3; t)j: (48)

The Rayleigh number of SI is Ra = 2400 and the computational mesh consists of N1 �N3 =
16 � 16 grid points where a single element is used in the wall-normal direction. It is seen
from the Figure that the early stage of the flow is governed by an exponential evolution of all
modes. Initially, the only mode growing is k1 = 1, while from t � 80 onwards higher modes
start to grow (the initial growth of modes k1 > 5 is caused by round-off errors). Nonlinear
interactions begin to dominate from t � 280 onwards, eventually leading to a stationary
solution which is attained to approximately t = 320. From the figure it is seen that in the
final stage the amplitude of the highest Fourier mode k1 = 7 is about six orders of magnitude
smaller than the amplitude of the lowest mode k1 = 1, which indicates that an excellent
numerical resolution is achieved.
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DNS of intrusion fronts 113

Figure 4. Time history of maximum Fourier modes T̂max(k1) of the temperature. Simulation SI of Rayleigh–Bénard
convection using 1 element with 16 grid points in the wall-normal direction (Ra = 2400; Pr = 0�71).

Table 1. Amplification rates ! of linear eigenmodes of the
Rayleigh–Bénard problem. Comparison of DNS results with
linear stability theory (LST). "! denotes the relative error in
the DNS results.

SI k = 1 SI k = 2 SII k = 1 SIII k = 1

!LST 0�072800 �0�15067 0�072800 0�054662
!DNS 0�072687 �0�15078 0�072686 0�054658
"! 0�16% 0�07% 0�16% 0�015%

4.1. COMPARISON WITH LINEAR STABILITY THEORY

As pointed out before, the initial stage of the flow development is characterized by an expo-
nential evolution of the individual modes, the amplitudes T̂ (t) of which develop in time
like

jT̂ (t)j
jT̂0j

= e!t where T̂0 = T̂ (t = 0): (49)

The factor ! in (49) is usually called the amplification rate. Since the initial disturbance
amplitudes are small, growth rates and/or decay rates may be compared with the results
from a linear stability analysis of the Rayleigh–Bénard problem (see [17]). For the first two
modes k1 = 1; 2 of SI such a comparison is provided in Table 1. The results show that the
amplification rates obtained from the DNS are in excellent agreement with the theoretical
values. The errors in the DNS results are of the order of 0�1%.

In Table 1 results of two other simulations, denoted as SII and SIII, respectively, have been
included. Simulation SII differs from SI with respect to the discretization in x3 only. Three
spectral elements of equal size have been used in SII, each of these containing np = 6 grid
points. This results in a total number of N3 = 16 mesh points in the normal direction which
is identical to what was used in SI. Table 1 shows that the results of the two simulations are
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identical up to six decimal places. The simulations SI and SIII utilize the identical computa-
tional mesh, but in SIII no-stress boundary conditions were applied at the walls, rather than
no-slip conditions, i.e.

@u1=@x3 = 0; @u2=@x3 = 0; u3 = 0 at x3 = �1; (50)

which reads in discretized form

D3û1;j = 0; D3û2;j = 0; û3;j = 0 at j = 1; N3: (51)

For the boundary conditions (50) the fluid layer is more unstable than for no-slip boundaries
due to the absence of wall friction. Consequently, convective motions set in at much smaller
Rayleigh numbers. The Rayleigh number used in SIII is Ra = 880 which is slightly above
the critical Rayleigh number Ra�c = 657�6 for frictionless boundaries. From Table 1 it is seen
that the results of SIII show the same excellent agreement with linear stability theory as do
the results of the simulations SI and SII.

4.2. STEADY CELLULAR CONVECTION

For the highly nonlinear stage of steady cellular convection no theoretical results are available
for validation. However, several extensive numerical studies of that flow regime have been
conducted in the past, the results of which may be employed for comparison with our DNS.
Clever and Busse [18], for example, have analyzed the steady-state equations numerically by
means of a Galerkin method. Among other things, they evaluated the average heat flux through
the fluid layer which can be expressed in non-dimensional form by the Nusselt number Nu
[10]. In our simulations the Nusselt number is given by the average temperature gradient at
the wall

Nu =
2
L1

Z L1=2

x1=�L1=2

����@T (x3 = +1)
@x3

���� dx1: (52)

In (52) the factor 2 enters for the same reason as the factor 8 was included in the definition
(47) of the Rayleigh number. The results obtained in [18] are summarized in Figure 5 where
our present DNS data have been included for comparison. The excellent agreement between
the results is readily seen.

5. Lock-exchange flow

5.1. INITIALIZATION

In the lock-exchange simulations the flow field is initialized with a fluid at rest, i.e. ui = 0
everywhere. In contrast to the straightforward initialization of the temperature field in the
Rayleigh–Bénard case, the proper initial values of temperature require more attention in the
lock-exchange case. In essence, the initial temperature field consists of a volume of light
and heavy gas in the left and right half of the channel, respectively, with some interface of
thickness � in between, i.e.

T0(x1) � T (x1; x3; t = 0) =

(
1 for x1 6 ��=2;

0 for x1 > �=2:
(53)
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Figure 5. Nusselt number as a function of Ra � Rac;Rac being the critical Rayleigh number. The individual
curves give the results for different Prandtl numbers obtained by Clever and Busse [18]. Squares give the present
simulation results for Pr = 0�71.

In principle � could be set to zero at the beginning, meaning that the initial temperature
distribution is a step function. However, since we use Fourier expansions in x1, the temperature
profile must be continuous and � has to be finite at t = 0. The numerical resolution required
in the initial stage depends directly on �, which makes a careful selection of the interface
thickness essential.

To obtain a guess for the initial interface structure, we may consider the case � � 0 at t = 0
and compare the relative importance of diffusion and convection of temperature in the start-up
phase. Due to the singularity in the temperature gradient at x1 = 0, there must be a short
time interval right after t = 0 where temperature diffusion dominates, despite the fact that
convection will be the dominant process in the further flow evolution for all Grashof numbers
of practical interest. We have conducted trial calculations at various Grashof numbers where
the temperature field was initialized with a smooth, but extremely steep interface. During
the simulations, both the thickening of the interface due to diffusion and its deformation due
to the onset of convection were monitored. These computations revealed that temperature
diffusion is clearly dominant for t < 0�25, if � � 0 at t = 0. As initial condition for the
lock-exchange simulations we therefore employed the analytic solution at time t = 0�25 of
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the pure heat-conduction problem for an infinite channel in which the temperature profile at
t = 0 is a step function. This analytic solution reads

T0(x1) =
1
2 �

1
2erf(x1

4
p

GrPr2): (54)

The number of grid points required to achieve adequate resolution of the initial temperature
field depends on the steepness of the profile (54). In our simulations we have used grid sizes
in the longitudinal direction of the order of

�x1 � (GrPr2)�(1=4); (55)

which turned out to be sufficient to achieve a decay of three to four orders of magnitude in the
Fourier spectrum of the temperature, not only in the initial stage, but also during the further
evolution of the flow. A similarly good resolution is achieved in the velocity field as long as
the Prandtl number Pr is not much smaller than one. In the normal direction grid sizes of
�x3 � �x1 were used in the interior of the channel, while a much more refined grid was
employed in the vicinity of the walls to allow for an adequate resolution of the developing
boundary layers.

Since an equidistant mesh is utilized in the longitudinal direction, the length L1 of the
computational domain should be as short as possible in order to minimize the computational
costs of the simulations. However, L1 needs to be long enough to ensure that the frictionless
end walls at x1 = �L1=2 exert no significant influence on the propagating fronts. To assess
these end-wall influences, we have conducted a number of simulations with identical Grashof
and Prandtl numbers, but with widely different channel lengths. A comparison of the results
revealed that end-wall influences are essentially confined to a region of width h in the imme-
diate neighborhood of the end walls. Therefore, we have always chosen the box length L1

such that the propagating fronts were still a distance of at least 2h away from x1 = �L1=2 at
the end of each simulation.

5.2. SIMULATION RESULTS

To illustrate the typical structure of a lock-exchange flow, Figure 6 shows isocontours of the
temperature for different values of the Grashof number. The Prandtl number has been set to
Pr = 2 in these simulations. All results in the figure are for the identical non-dimensional
time (t = 14) after the initial release. For lower Grashof numbers the flow is very diffusive,
exhibiting a thick temperature interface in the interior of the channel and only modest gradients
at the advancing front. However, even for Gr = 2500 some characteristic features of the head
of the front can be observed clearly, for example the existence of a distinct foremost point
of the front, the so-called nose, which is raised above the wall. In the low-Grashof-number
regime the elevation of this foremost point can be seen to decrease slightly with increasing
Grashof number, which is in accordance with experimental observations [1]. The temperature
gradients at the head of the front steepen significantly with increasing Gr and require a very
fine numerical grid at higher Grashof numbers. For Gr = 6�125 � 105, for example, a mesh of
N1 �N3 = 512� 64 grid points had to be employed to achieve adequate resolution.

From Figure 6 it is seen that the interface between the heavy and the light fluid is stable at
lower Grashof numbers. Kelvin–Helmholtz type instabilities can be seen for the two higher
Grashof numbers where patterns of co-rotating vortices emerge. At Gr = 6�125 � 105 this
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Figure 6. Isocontours of temperature at t = 14. Results for different Grashof numbers: (a) Gr = 2�5 � 103,
(b) Gr = 2�5 � 104, (c) Gr = 105 and (d) Gr = 6�125 � 105: Pr = 2 and �1 = 0�15. Contour lines are evenly
distributed between the maximum and minimum values.

interfacial instability is very pronounced. Each of the two progressing currents exhibits one
strong vortex immediately behind the head of the front, and a second somewhat distorted
vortex further downstream. This second vortex has emerged from two originally separate
vortices which have undergone pairing just before t = 14. Further pairings do occur in the
subsequent evolution of the flow involving new vortices which are continuously shed from
the advancing fronts. Note that the simulations are strictly two-dimensional and that, hence,
two-dimensional Kelvin–Helmholtz billows may not break up into smaller three-dimensional
structures. The pairing will therefore continue until the finite height of the channel inhibits
further growth.

In practice, the overall speed at which an intrusion front propagates is of particular interest.
If one denotes the (time-dependent) x1 position of the nose of the front by xn1 , the propagation
speed ~uf is given by

~uf =
dxn1
dt

: (56)

The front speed ~uf is usually normalized by the buoyancy velocity (5) which gives the
Froude number Fr = ~uf=~ub of the gravity current [1]. Starting from zero at t = 0, the
front speed rises rapidly during an initial transient, but attains a fairly constant value after
about 5 to 8 dimensionless time units. In order to assess the influence of viscous forces on the
propagation velocity of the fronts, we have evaluated this approximately stationary front speed
from the results of a series of simulations with different Grashof numbers. We remark that the
assessment of such Grashof-number effects is of special importance in DNS. The reason is that
in practical applications Grashof numbers are typically very large, whereas direct simulations
are constrained to moderate Grashof numbers due to the enormous resolution requirements.

The Grashof-number dependence of the front speed, as obtained from our simulations, is
depicted in Figure 7. In the individual simulations very different discretizations were used,
ranging from N1�N3 = 192�48 mesh points for the lowest Grashof number (Gr = 5�104)
to 1024 � 192 nodes for Gr = 108. It is seen from the Figure that Fr increases significantly
with increasing Grashof number over the whole range examined. From theoretical arguments
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Figure 7. Froude number Fr of the front as a function of Grashof number. Simulations performed with Pr = 1 and
�1 = 0�225. Frmax = 1=

p
2 is the theoretical limit for the Froude number [1]. The vertical bar gives the span of

results obtained in lock-exchange experiments with Ar and CO2 [19].

it is known that an upper limit for the Froude number is Frmax = 1=
p

2 which can be derived
under the assumption that potential energy is converted into kinetic energy without losses [2].
Experimental evidence shows that the high-Grashof-number limit of Fr is only slightly less
than this theoretical value and amounts to about 0�65 to 0�67 [1, 9]. Given this and the results
shown in Figure 7, we conjecture that the front speed will probably not be independent of
Grashof number below Gr � 1010.

For comparison, some recent experimental data have been included in Figure 7 and a good
agreement between these results and our present simulations can be observed. It should be
emphasized, however, that the flow was highly three dimensional in the experiment. The good
agreement with our strictly two-dimensional simulations, therefore, suggests that the Froude
number of a gravity current is not very sensitive to three-dimensional effects.

Due to both mixing at the interface and friction on the wall, there is a continuous transport
of fluid away from the head of a gravity current. In consequence, the internal velocity within
the advancing current must be higher than the front speed to provide the mass transport
required to balance the occurring losses. In Figure 8 the longitudinal velocity u1(x1) is shown
for three different time instants of a simulation at Gr = 8�15� 105 and Pr = 1. The velocities
were taken at x3 = 0�738 which is the wall-normal position of the nose of the light-gas front
travelling to the right in the upper channel half. The actual position of the front is where the
steep increase of u1 occurs. While for this Grashof number the front speed is about Fr = 0�56
(see Figure 7), much larger values are found for u1 within the front, as is seen from the
three curves. At t = 10�8, when the propagating current is fully developed, it is observed
that immediately behind the front a zone of constant velocity forms. This constant velocity is
approximately 0�65 which amounts to about 1�16 times the front speed. This again is in good
agreement with experimentally established results [1, 3].

6. Concluding remarks

In the present paper a numerical method for the direct numerical simulation of lock-exchange
flows in a plane channel has been described. Results of a validation study have been pre-
sented and a number of two-dimensional simulations of lock-exchange flows have been per-
formed. The simulations are based on the Boussinesq Equations in which density variations
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Figure 8. Longitudinal velocity u1(x1) at x3 = 0�738 for three different time instants t. Simulation performed
with L1 = 16;Gr = 8�15� 105, and Pr = 1.

are assumed to be small. For the numerical solution of these equations we apply a mixed
spectral/spectral-element discretization in space, coupled with a finite-difference scheme for
the time discretization. The algorithm employs a direct solution of the Poisson Equation for
the pressure by an influence-matrix technique.

For the validation of the numerical method we have performed simulations of Rayleigh–
Bénard convection. From the numerical point of view, the Rayleigh–Bénard flow differs
from the lock-exchange problem only with respect to the initial and boundary conditions for
the temperature. The results of the Rayleigh–Bénard simulations were compared with linear
stability theory and with reference data for steady cellular convection taken from the literature.
In all cases an excellent agreement could be observed.

The simulations of two-dimensional lock-exchange flows revealed the typical character-
istics of intrusion fronts which have been observed in numerous experimental studies in the
past. Among them are the formation of a pronounced head of the front, with a foremost
point being raised above the wall, and strong Kelvin–Helmholtz billows which develop at the
interface between the light and heavy fluid. The instability of the interface, however, is not
observed for smaller Grashof numbers. The propagation speed of the fronts obtained from
the simulation results was shown to be in good agreement with recent experimental data. A
systematic variation of the Grashof number revealed that the propagation speed is affected
by viscosity over the whole range examined. We have estimated that a weak Grashof-number
dependence of the front speed may remain up to Grashof numbers of the order of 1010.

The limitations of strictly two-dimensional lock-exchange simulations are illustrated by
the fact that the Kelvin–Helmholtz billows at the interface may thicken and pair until the finite
width of the channel restrains their further growth. In a three-dimensional situation, however,
these large vortices are observed to break up rapidly into small-scale turbulence. In the next
stage of our research project we will perform three-dimensional simulations which will allow
to analyze this breakup process in detail and to assess its implications for entrainment and
mixing at the interface.
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5. H.P. Gröbelbauer, T.K. Fannelop and R.E. Britter, The propagation of intrusion fronts of high density ratios.

J. Fluid Mech. 250 (1993) 669–687.
6. J. Yao and T.S. Lundgren, Experimental investigation of microbursts. Experiments in Fluids 21 (1996) 17–25.
7. K.K. Droegemeier and R.B. Wilhelmson, Numerical simulation of thunderstorm outflow dynamics. Part I:

Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci. 44 (1987) 1180–1210.
8. J. Klempp, R. Rotunno and W. Skamarock, On the dynamics of gravity currents in a channel. J. Fluid Mech.

269 (1994) 169–198.
9. C.-S. Yih, Dynamics of Nonhomogeneous Fluids. New York: The McMillan Company (1965) 306pp.

10. B. Gebhart, Y. Jaluria, R.L. Mahajan and B. Sammakia, Buoyancy-Induced Flows and Transport. New York:
Hemisphere Publishing Corporation (1979) 971pp.

11. N. Gilbert and L. Kleiser, Turbulence model testing with the aid of direct numerical simulation results. In:
Proc. of the 8th Symposium on Turbulent Shear Flows. Munich, Sepember 9–11 (1991).

12. Ch. Hirsch, Numerical Computation of Internal and External Flows, Volume One: Fundamentals of Numerical
Discretization. Chichester: John Wiley and Sons (1988) 515pp.

13. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. New York:
Springer Verlag (1988) 557pp.

14. G.E. Karniadakis, S.A. Orszag and M. Israeli, High-order splitting methods for the incompressible Navier–
Stokes Equations. J. Comp. Phys. 97 (1991) 414–443.

15. Y. Maday and A.T. Patera, Spectral element methods for Navier–Stokes Equations. In: A.K. Norr (ed.)
State-of-the-Art Surveys in Computational Mechanics, New York: ASME (1989) 71–143pp.

16. L. Kleiser and U. Schumann, Spectral simulations of the laminar-turbulent transition process in plane
Poiseuille flow. In: R.G. Voigt et al. (eds.) Spectral Methods for Partial Differential Equations. Philadelphia:
SIAM (1984) 141–163pp.

17. P.G. Drazin and W.H. Reid, Hydrodynamic Stability. Cambridge: Cambridge University Press (1981) 527pp.
18. R.M. Clever and F.H. Busse, Low-Prandtl-number convection in a layer heated from below. J. Fluid Mech.

102 (1981) 61–74.
19. J. Müller and T.K. Fanneløp, Private Communication (1996).

engi656.tex; 19/11/1997; 8:03; v.7; p.18


